博客
关于我
读pkl文件,并打印出每行的权重
阅读量:192 次
发布时间:2019-02-28

本文共 366 字,大约阅读时间需要 1 分钟。

PyTorch模型加载与权重分析

在当前实验中,我们使用PyTorch框架加载预训练模型,主要目的是分析模型各层的权重参数。以下是具体实现细节:

首先,加载模型及其预训练参数:

model = Net()model.load_state_dict(torch.load(r"C:\Users\admin\Desktop\test1\w.pkl"))

接下来,检查各层权重参数:

print(model.fc1.weight)  # 查看第一层全连接层的权重print('/') print(model.fc2.weight)  # 查看第二层全连接层的权重print('/')print(model.fc3.weight)  # 查看第三层全连接层的权重

通过上述代码,可以观察到模型各层的权重参数,进一步分析模型的结构和特征表达。

转载地址:http://bhpi.baihongyu.com/

你可能感兴趣的文章
object detection错误之no module named nets
查看>>
Object of type 'ndarray' is not JSON serializable
查看>>
Object Oriented Programming in JavaScript
查看>>
object references an unsaved transient instance - save the transient instance before flushing
查看>>
Object.keys()的详解和用法
查看>>
OBJECTIVE C (XCODE) 绘图功能简介(转载)
查看>>
Objective-C ---JSON 解析 和 KVC
查看>>
Objective-C 编码规范
查看>>
Objective-C——判断对象等同性
查看>>
Objective-C之成魔之路【7-类、对象和方法】
查看>>
Objective-C享元模式(Flyweight)
查看>>
Objective-C以递归的方式实现二叉搜索树算法(附完整源码)
查看>>
Objective-C内存管理教程和原理剖析(三)
查看>>
Objective-C实现 Greedy Best First Search最佳优先搜索算法(附完整源码)
查看>>
Objective-C实现 jugglerSequence杂耍者序列算法 (附完整源码)
查看>>
Objective-C实现1000 位斐波那契数算法(附完整源码)
查看>>
Objective-C实现2 个数字之间的算术几何平均值算法(附完整源码)
查看>>
Objective-C实现2d 表面渲染 3d 点算法(附完整源码)
查看>>
Objective-C实现2D变换算法(附完整源码)
查看>>
Objective-C实现3n+1猜想(附完整源码)
查看>>