博客
关于我
读pkl文件,并打印出每行的权重
阅读量:192 次
发布时间:2019-02-28

本文共 366 字,大约阅读时间需要 1 分钟。

PyTorch模型加载与权重分析

在当前实验中,我们使用PyTorch框架加载预训练模型,主要目的是分析模型各层的权重参数。以下是具体实现细节:

首先,加载模型及其预训练参数:

model = Net()model.load_state_dict(torch.load(r"C:\Users\admin\Desktop\test1\w.pkl"))

接下来,检查各层权重参数:

print(model.fc1.weight)  # 查看第一层全连接层的权重print('/') print(model.fc2.weight)  # 查看第二层全连接层的权重print('/')print(model.fc3.weight)  # 查看第三层全连接层的权重

通过上述代码,可以观察到模型各层的权重参数,进一步分析模型的结构和特征表达。

转载地址:http://bhpi.baihongyu.com/

你可能感兴趣的文章
Objective-C实现logistic regression逻辑回归算法(附完整源码)
查看>>
Objective-C实现logistic sigmoid函数(附完整源码)
查看>>
Objective-C实现longest Common Substring最长公共子串算法(附完整源码)
查看>>
Objective-C实现longest increasing subsequence最长递增子序列算法(附完整源码)
查看>>
Objective-C实现longestCommonSubsequence最长公共子序列算法(附完整源码)
查看>>
Objective-C实现LongestIncreasingSubsequence最长递增子序列算法(附完整源码)
查看>>
Objective-C实现lorenz transformation 洛伦兹变换算法(附完整源码)
查看>>
Objective-C实现Lower-Upper Decomposition上下分解算法(附完整源码)
查看>>
Objective-C实现LowerCaseConversion小写转换算法(附完整源码)
查看>>
Objective-C实现lowest common ancestor最低共同祖先算法(附完整源码)
查看>>
Objective-C实现LRU 缓存算法(附完整源码)
查看>>
Objective-C实现LRU缓存(附完整源码)
查看>>
Objective-C实现LRU(least recently used)算法(附完整源码)
查看>>
Objective-C实现lstm prediction预测算法(附完整源码)
查看>>
Objective-C实现lucas数列算法(附完整源码)
查看>>
Objective-C实现Luhn (Mod 10)Algorithm算法(附完整源码)
查看>>
Objective-C实现LZW编码(附完整源码)
查看>>
Objective-C实现MAC桌面暗水印(附完整源码)
查看>>
Objective-C实现mandelbrot曼德勃罗特集算法(附完整源码)
查看>>
Objective-C实现markov chain马尔可夫链算法(附完整源码)
查看>>